— Exercises —

- 1. Borel realization theorem. Let $(a_n)_{n\geq 0}$ be an arbitrary sequence of numbers. Let φ : $\mathbb{R} \to \mathbb{R}$ be a \mathcal{C}^{∞} function s.t. $\varphi(x) = 1$ if $x \in [-1,1]$ and $\varphi(x) = 0$ if |x| > 2. Define $\forall n \geq 0, \varphi_n = x^n \varphi(x)$ and denote by M_n an upper bound of $|\varphi_n|, |\varphi'_n|, \dots, |\varphi^{(n-1)}_n|$ on \mathbb{R} . Choose a sequence $(\lambda_n)_{n\geq 0}$ tending to $+\infty$, s.t. $\forall n, \lambda_n \geq 1$ and $\sum_{n\geq 0} |a_n|M_n/\lambda_n$ converges. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sum_{n\geq 0} a_n x^n \varphi(\lambda_n x)$.
 - (a) Check that everything is well-defined.
 - (b) Show by induction on p that $\forall p \ge 0$, f is C^p and $\forall x, f^{(p)}(x) = \sum_{n\ge 0} a_n \lambda_n^{p-n} \varphi_n^{(p)}(\lambda_n x)$. *Hint: at each induction step, show the normal convergence of the series of derivatives.*
 - (c) Conclude that $\forall p \ge 0, f^{(p)}(0)/p! = a_p$.

2. Solving differential equations using power series. Text p. 583 12.59

- 3.* Weak Tauberian Theorem Let $\sum_{n\geq 0} a_n x^n$ be a power series with radius of convergence 1. Let $f: (-1,1) \to \mathbb{R}$ be its sum. Assume that $f(x) \to S$ when $x \xrightarrow{x<1} 1$ and $na_n \xrightarrow{n\to\infty} 0$. Show that $\sum_{n\geq 0} a_n$ converges to S.
- 4. **Riemann-Lebesgue lemma.** Let $\varphi : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic piecewise continuous function. Let $f : [a, b] \to \mathbb{C}$ be a piecewise continuous function. We want to show that

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) e^{int} dt = 0$$

(a) Show that

$$\lim_{n \to +\infty} \int_a^b f(t)\varphi(nt)dt = \frac{1}{2\pi} \left(\int_0^{2\pi} \varphi(t)dt \right) \left(\int_a^b f(t)dt \right).$$

Hints: Denote $K = \frac{1}{2\pi} \int_0^{2\pi} \varphi(t) dt$. We want to show that

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \Big(\varphi(nt) - K \Big) dt = 0, i.e.,$$

 $\lim_{n\to+\infty} \int_a^b f(t)\psi(nt)dt = 0$ with $\psi = \varphi - K$. Note that $\int_0^{2\pi} \psi(t)dt = 0$. Prove the result in three steps: first when f is a characteristic function $\chi_{[\alpha,\beta]}$ with $[\alpha,\beta] \subset [a,b]$, then when f is a step function, then for a general f, which can be approximated by a step function.

(b) Show that $\int_0^{2\pi} e^{it} dt = 0$ and conclude.