1. Borel realization theorem. Let $\left(a_{n}\right)_{n \geq 0}$ be an arbitrary sequence of numbers. Let φ : $\mathbb{R} \rightarrow \mathbb{R}$ be a \mathcal{C}^{∞} function s.t. $\varphi(x)=1$ if $x \in[-1,1]$ and $\varphi(x)=0$ if $|x|>2$. Define $\forall n \geq 0, \varphi_{n}=x^{n} \varphi(x)$ and denote by M_{n} an upper bound of $\left|\varphi_{n}\right|,\left|\varphi_{n}^{\prime}\right|, \ldots,\left|\varphi_{n}^{(n-1)}\right|$ on \mathbb{R}. Choose a sequence $\left(\lambda_{n}\right)_{n \geq 0}$ tending to $+\infty$, s.t. $\forall n, \lambda_{n} \geq 1$ and $\sum_{n \geq 0}\left|a_{n}\right| M_{n} / \lambda_{n}$ converges. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sum_{n \geq 0} a_{n} x^{n} \varphi\left(\lambda_{n} x\right)$.
(a) Check that everything is well-defined.
(b) Show by induction on p that $\forall p \geq 0, f$ is \mathcal{C}^{p} and $\forall x, f^{(p)}(x)=\sum_{n \geq 0} a_{n} \lambda_{n}^{p-n} \varphi_{n}^{(p)}\left(\lambda_{n} x\right)$. Hint: at each induction step, show the normal convergence of the series of derivatives.
(c) Conclude that $\forall p \geq 0, f^{(p)}(0) / p!=a_{p}$.

2. Solving differential equations using power series. Text p. 58312.59

3. Weak Tauberian Theorem Let $\sum_{n \geq 0} a_{n} x^{n}$ be a power series with radius of convergence 1 . Let $f:(-1,1) \rightarrow \mathbb{R}$ be its sum. Assume that $f(x) \rightarrow S$ when $x \xrightarrow{x<1} 1$ and $n a_{n} \xrightarrow{n \rightarrow \infty} 0$. Show that $\sum_{n \geq 0} a_{n}$ converges to S.
4. Riemann-Lebesgue lemma. Let $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ be a 2π-periodic piecewise continuous function. Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. We want to show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) e^{i n t} d t=0
$$

(a) Show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) \varphi(n t) d t=\frac{1}{2 \pi}\left(\int_{0}^{2 \pi} \varphi(t) d t\right)\left(\int_{a}^{b} f(t) d t\right) .
$$

Hints: Denote $K=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(t) d t$. We want to show that

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t)(\varphi(n t)-K) d t=0 \text {, i.e., }
$$

$\lim _{n \rightarrow+\infty} \int_{a}^{b} f(t) \psi(n t) d t=0$ with $\psi=\varphi-K$. Note that $\int_{0}^{2 \pi} \psi(t) d t=0$. Prove the result in three steps: first when f is a characteristic function $\chi_{[\alpha, \beta]}$ with $[\alpha, \beta] \subset[a, b]$, then when f is a step function, then for a general f, which can be approximated by a step function.
(b) Show that $\int_{0}^{2 \pi} e^{i t} d t=0$ and conclude.

